

Assessment of POREM the new bio-activator for better soil management

Laboratory of Materials Technologies Faenza (TEMAF), Italian National Agency for New Technologies, Energy and sustainable economic development (ENEA), Via Ravegnana 186, 48018 Faenza (Italy)

PROJECT OBJECTIVES

The European Project LIFE17 ENV/IT/000333 POREM proposes the innovative bioactivator POREM to restore the soil by bioremediation.

Location: Italy, Spain, Czech Republic; Duration: 1/10/2018 - 30/9/2021 Raw materials: poultry dejections, litter, manure

Objectives: implementation of the innovative and low-cost technologies for production of POREM bioactivator and efficiency demonstration of its applicability for soil restoration/bioremediation (low organic matter soils, semiarid areas)

Innovative functions: the specific POREM use for bioremediation of very poor in Organic Matter soils

- → fertility recovery
- → C sink in soils, struvite formation (N and P sink, slow release)
- → biological quality (properties of soil improver/amendment → edaphic fertility)

Innovative process: a simplified, static, energy saving biotreatment: poultry manure + natural enzyme preparation from plants EU patent (EP 1314710). Mechanisms: struvite formation + static process → the double goal of reducing environmental impact and to enhance the nutrients and carbon retention

EXPERIMENTAL RESULTS

Design of experiments:

- Production of POREM bioactivator in pilot scale for field application
- Chemical/Physical characterizations of POREM bioactivator: TGA, SEM, XRD
- Bioactivator characteristics monitoring (evolution of chemical, physical, microbiological and biochemical parameters, such as element content and availability, enzymatic activity for C, N & P cycle)
- Gas monitoring both at lab and pilot scale (CO_2, NH_3, CH_4, H_2S)

First year results (before soil application):

- POREM samples at different time of maturation (until 120 days) were characterized
- The replicability of measured properties was highlighted both at piles and samples level
- Analyzing the properties of POREM, the time trend appears promising

TGA

Thermal stability and decomposition phases (ΔT and %mass loss)

The main steps of mass loss:

Region I \rightarrow [0-200]°C: water removal

Region II → [200-360] °C: aliphatic fraction (carbohydrates and alkyl labile systems)

Region III → [360-550] °C: aromatic moieties

Region IV → [550-1000] °C: inorganic components of poultry manure chars

➤ The inorganic fraction increases over the time

better thermal stability

SEM

Morphological and semiquantitative analysis

- heterogeneous morphology (presence of various residues)
- > 0 and C are the main elements (Ca, P, K, Cl, Mg, S are also detected)

XRD

Detection of mineralogical phases

- > Two main crystalline phases: Calcite (CaCO₃) and Struvite $(NH_4MgPO_4 \cdot 6H_2O)$
- > The amorphous phase is clear present at the beginning but decreasing with maturation time
- > The crystallinity and inorganic phases are more evident with maturation time
- > The XRD results, correlated to time maturation, are consistent both with the thermal behaviour examined in TGA and with semiquantitative results of SEM-EDX observations

COMMENTS

- The replicability of POREM production was demonstrated
- Demonstration of time trend of POREM bioactivator properties
- The characterization results are mutually consistent and highlight an improved bioactivator stability, correlated to the maturation time

Future development:

- · Mitigation of GHG and ammonia emissions during POREM production: applicability of a treatment to convert poultry manure into an organic bioactivator with reduced odor impact (80% NH₃ emission in comparison with fresh ones)
- Bioactivator quality: reduced salinity (<5 dS/m), 40% P contained in struvite compound
- Soil quality: organic C (40%) and water soluble C (40%), N_{tot} and P_{tot} (25%) increase with repeated applications

MICRONADIR S.L.

